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--The barrier to internal rotation in allene is computed to be 72.7 kcal/mole from an LCAO SCF 
computation using 41 Gaussian basis orbit&. The results are compared to p&ictions from a simple 
Htickel calculation. Attempts to interpret the rotation barrier simply in terms of the allene orbit& fail. 

AN LCAO scp calculation using the 41 simple Gaussian basis orbitals in Table 1 was 
carried out, with the New York University POLYATOM program, on the allene 
ground state (Dza geometry) and on a twisted allene in which one CH, group was 
rotated to make the entire molecule planar (DZh geometry). For both forms the C-H 
bond length was taken to be 1.087 A = 2.054 au,’ the C-C to be 1.308 A = 2.472 au 
and the H-C-H angle to be 118” 1O’.2 No further approximations were made, and 
all integrals were evaluated exactly. The resulting orbitals are in Table 2. The energy 
of D2,, allene is calculated to be 72.7 k&/mole higher than that of the normal D2d 
form. This is shown in Table 3 with other energies that will be needed. 

We wish to consider the question: Can the 727 kcal of twisting strain energy be 
interpreted simply in terms of changes in allene orbitals? For comparison, let us first 
examine the rotation using the simplest possible Htickel model. Localized bonds and 
the 4 2px AO’s, each contributing one electron, are shown for the D,, and DZh 
structures in Fig 1. In the D2, ground state the II AO’s form what is essentially a pair 
of isolated double bonds whose x energy in the Hiickel approximation is 4(a + /.?). On 
twisting to the D2h geometry, one of the double bonds is broken with one of the A AO’s 
rotating into conjugation with the second double bond to form an ally&like radical, 
the II levels of which lie at a and a f fi /3. The other x A0 remains as an isolated 
2p orbital of energy a. Two electrons would be expected to go into the a + fi p level 
and one into each of the non-bonding levels to give an energy of 4a + @ /‘? which is 
- l-17/? above that of the D2, form. 

In a similar way the energy to twist one end of ethylene by 90” is computed to be 
-2/I. This may be equated to the observed 65 kcal/mole for the activation energy of 
cis-trans isomerization of dideuteroethylene,3 to give /I = -32.5 kcal. Thus the 
Hiickel model would predict an allene rotational barrier of 1.17 x 32.5 = 38 kcal. 
This does not agree well with the 72.7 kcal from the SCF calculation. One can extra- 
polate Moskowitz and Harrison’s’ SCF results for ethylene from 80” to 90” to give 
an estimated SCF barrier of 105 +5 kcal. Since this is high, one might expect the 
allene SCF barrier to be high. As far as we are aware, there is no experimental value 
of the allene barrier available for comparison. 

Let us now return to our SCF results. The valence orbitals of allene are pictured 
roughly in Fig 2, together with the orbitals to which they transform on flattening the 
molecule. The 3 lowest orbitals of each geometry at about - 11 au (Table 2) are 1s 

l Valuea of fundamental constauts and conversion factors were taken from tbe ruxnt survey.’ 1 au of 
kngth = @52917 4 1 au of energy = 27.211 eV = 6275 kcal/mole. 
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inner shells of carbon and are not shown. Correlation of DZd and D,, levels is made 
taking care not to violate the non-crossing rule in intermediate D2 geometries. The 
result is that a, and b, orbitals of normal allene both go to either s or a,, orbitah in 
the flattened form. a, and b, orbitals go to b,, or bi, orbitals, and an e orbital gives 
one of either b,, or bzU plus one of either b,, or bsu symmetry. 

The degenerate pair 2e corresponds to the 4 electrons in isolated double bonds in 
the Htickel approximation. These two orbitals together with the corresponding 
excited pair 3e correlate with lb,, (the bonding ally1 orbital), lbzr (the non-bonding 
ally1 orbital), 2bzU (the non-bonding p orbital in the plane of the molecule), and 2b,, 
(the antibonding ally1 orbital). This is roughly in accord with the Htickel picture. The 
main difference is that lbz, and 2b2, are not of the same energy. One might ascribe 
their large difference (029 au = 184 kcal) to destabilization of the 2bzu level by anti- 
bonding interaction of the central p orbital in the plane of the molecule with the 
hydrogen orbitals. 

Because of this removal of the accidental degeneracy between lbzo and 2bzy, the 
expected DZh ground state would be a closed-shell ‘A, structure with orbitals through 
lbzr doubly filled. The DZh orbitals in Fig 1 were computed on this assumption. 
However, even with these orbitals, promotion of 1 electron from lbzr to 2bzU gives 
rise to a ‘A, state 0.7 k&/mole below and a 3A, state 2.8 kcal/mole below the IA, 
“ground state”. If the SCF computations were done directly on these states, they 
would lie still lower. Thus in this indirect way the more rigorous SCF results are in 
agreement with the simple Hiickel model. 

Returning to the problem of whether or not the rotational barrier can be understood 
by a simple inspection of the allene orbitals, we shall consider rotation to the ‘A, 
state, the state corresponding to the 72.7 kcal barrier mentioned above, since this is 
the state for which the orbitals in Fig 1 were computed. Similar comments would 
apply to the slightly lower ‘A, and ‘A,, states. 

The most striking effect of the rotation is the splitting of the degenerate 2e orbital 
to the lb,, and lbzn. But the splitting is very nearly symmetric, and 2 electrons in 
lb,, plus 2 in lbl, have only 11 kcal more orbital energy than 4 in 2e. Hence, this 
does not account for the main part of the rotational barrier. 

Looking down the list of orbitals, the clearest remaining effect of rotation is the 
unsymmetrical splitting of the le orbital into lb,, and lb3*. The result of this is an 
increase in orbital energy of 43 kcal. Since the le orbital is due to hyperconjugation 
between the end hydrogens and pn orbitals on the central atom, it might appear that 
loss of hyperconjugation is the main cause of the rotational barrier. Unfortunately, 
this simple picture does not hold up either. Although the largest orbital shift comes 
from the le, all others move up or down a little. Summing over all gives the total 
difference in orbital energies of only O-25 kcal (Table 3). 

Of course the sum of orbital energies is not the total molecular energy. In summing 
the orbital energies, each electron-electron repulsion has been counted twice instead 
of once. Further, the coulomb repulsions between nuclei have not been included. 
The change in nuclear-nuclear repulsion on rotating allene is particularly small since 
all that happens is that the hydrogen nuclei are brought slightly closer together. This 
gives an energy gain of only 1.9 kcal (Table 3) and accounts for only a very small part 
of the rotation barrier. By default one can say that the main part of this barrier is due 
to changes in electron-electron repulsion energy. This repulsion energy may be 
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apportioned among the orbit& to give what Coulson and Nielson5 call “partitioned 
energies” that do add to give the total molecular energy, or it may be dissected into 
n-x, x-o and o-u contributions. We have examined the electron repulsion energy in 
these ways, but the results do not seem especially illuminating Other, more elaborate, 
dissections of the total energy might be considered,6 but we conclude that here, and 
probably in other cases, discussions based on a naive inspection of orbital shapes or 
energies are not sound. 

FIG 1. Hilckcl model of the rotation. 
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FIG 2. The valeocc orbitals of a&me. 
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Orbital cxponente’ 

On each carbon atom : 
s orbitahs 
P.. p, , P. orbitafs 

On each hydrogen atom : 
s orbitals 

032,1~6,8=0,~, 200 
02469.1481 

@27, 1.8 

’ Taken from Ref 4 

TABLE 2. ALLENE ORBITAIS 

D, (= normal) geometry 

orbital energy (au) 

D,, (= tlattened) geometry 

orbital energy (au) 

- 11.3321 
- 11.3012 
- 11.3003 
- 1.1061 
- 05’822 
- 0.7124 
- 06067 
- 06036 
- 03728 
+ 01863 

1% - 114363 
lb,, - 11.2580 

2% - 11.2571 

3a. - 1.1284 

2b,, - 09912 

4a‘ - 07045 
lbz. - 06155 

3b,. - 06082 

lb,, - 05576 

lb,, - 04894 

lb,, - 02474 

2bz. + 0459 
2bs, + 02511 

TABLE 3. ENBRQY QUANTrrm9 POR THE TWO IXXM op ALIENB 

Electronic 
Nuclear repulsion 
Total 
Orbital energy’ 

D, geometry 
(au) 

- 173.9599 
59.1207 

- 114.8392 
- 785876 

Ds, geometry 
(au) 

- 173.8467 
59.1234 

- 114.7233 
- 78.5872 

Da-Da, 
(kcal/mote) 

71Q 
19 

72.7 
Q25 

’ Twice the sum over filled orbitals of the orbital energies 

‘REFERENCES 

’ E. R Cohen and J. W. DuMond, Reu. Mod. Phys 37,537 (1965) 
s A. G. Maki and R. A. Toth, 1. Mol. Spectroscopy 17. 136 (1965) 
3 J. E. Douglas, B. S. Rabiuovitch and F. S. Looney, J. Chem. Phys. 23,315 (1955) 
l J. W. Moskowitz and M. C. Harrison, Ibid. 42 1726 (1%5) 
’ C A. Coulson and A. H. Nielson, Disc. Faraday Sot. 35,71(1%3) 
’ R J. Buenker, J. Cheat. Phys -1368 (1968) 


